
Ecole polytechnique fédérale de Zurich Chaire de génie forestier

Dr. E. Burlet

CONSTRUCTION DES ROUTES FORESTIERES

Dessertes forestières et impacts environnemetaux Pontarlier, 1^{er} juin 1999

1. Etude du projet de détail de routes forestières

Tâches principales du projet de détail de routes forestières:

- détermination du tracé en plan de la route
- détermination du tracé du profil en long
- configuration du corps de la chaussé dans les profils en travers

Opérations dans le terrain:

- piquetage du tracé de pente de la route
- piquetage d'un tracé polygonale
- levé du tracé polygonale
- piquetage de l'axe de la route
- levé de l'axe de la route et des profils en travers pour chaque point de l'axe

Etude au bureau:

élaboration du projet au moyen d'un progamme informatique

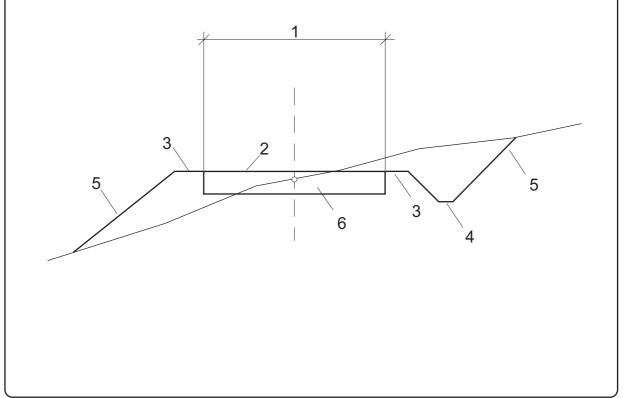
Dossier du projet:

- plan des profils types
- plan de situation du projet
- plan du profil en long
- plan des profils en travers
- plan du mouvement des terres
- rapport technique
- devis

2. Eléments du profil en travers de la route

Elements du profil en travers:

1 Chaussée: largeur

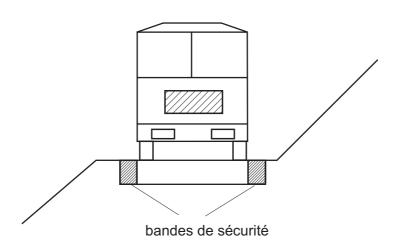

2 Surface de la chaussée: forme

3 Accotements: largeur et aménagement

4 Fossés: aménagement

5 Talus: pente

6 Superstructure couches et épaisseur



3. Chaussée

3.1 Largeur de la chaussée

Largeur d' une voie de circulation:

largeur maximale des véhicules + largeur des bandes de sécurité

Facteurs déterminants pour le choix de la largeur de la chaussée:

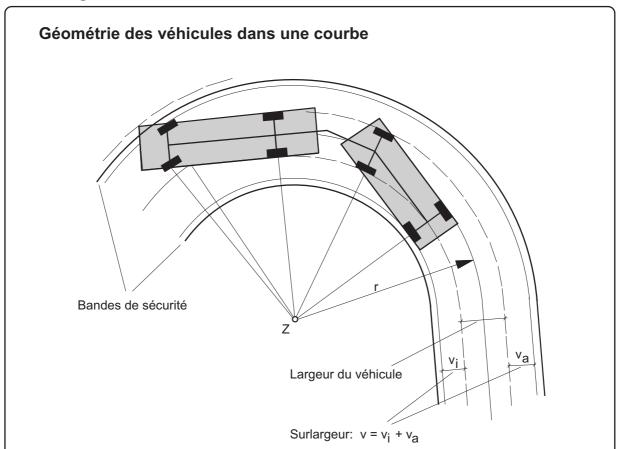
- Intensité du trafic: trafic très faible sur les routes forestières

Chaussée à voie unique

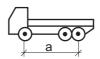
- Largeur des véhicules: largeur maximale des véhicules selon

le code suisse de la route: 2.55 m

- Vitesse de base: influence la largeur des bandes de sécurité

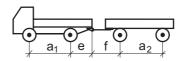

Largeur de la chaussée = Largeur maximale des véhicules x F

F: facteur dépendant de la vitesse de base (1.3 - 1.5)


Largeur de la chaussée des routes forestières en Suisse

Type de routes	Largeur
Routes de desserte (20 km/h)	3.2 - 3.3 m
Routes collectrices (30 km/h)	3.4 - 3.5 m
Routes de liaison (40 km/h)	3.6 - 3.7 m

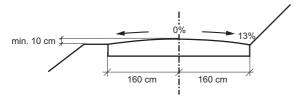
3.2 Surlargeur de la chaussée dans les courbes


Surlargeur pour camions

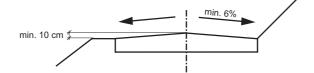
$$v = \frac{a^2}{2 r}$$

$$v = \frac{14}{r}$$

Surlargeur pour trains routiers



$$v = \frac{a_1^2 + f^2 + a_2^2 - e^2}{2 r}$$


pour
$$a_1 = 5.0 \text{ m}$$

 $f = 3.0 \text{ m}$
 $a_2 = 5.0 \text{ m}$
 $e = 2.5 \text{ m}$
 $v = \frac{26}{r}$

3.3 Forme de la surface de la chaussée

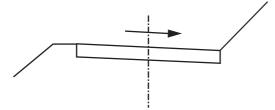
Chaussée à surface bombée

Chaussée à surface en forme de toit

Avantages:

- les distances d'écoulement de l'eau sur la chaussée sont relativement courtes;
- l'eau provenant des talus amont ne s'écoule pas sur la chaussée;
- du point de vue de la forme de la chaussée, le danger de dérapage transversal des véhicules dans le cas d'une chaussée glissante est faible.

Désavantages:


- l'évacuation de l'eau qui s'écoule le long du bord amont de la chaussée nécessite l'aménagement d'aqueducs;
- le déneigement est problématique.

Appréciation:

bonne solution pour les routes en gravier

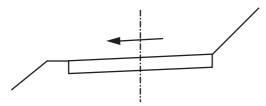
Chaussée à dévers unique vers l'amont

route en gravier: min. 5% route avec revêtement: min. 3%

Avantages:

- l'eau provenant de la chaussée ainsi que des talus amont ne s'écoule pas par-dessus les talus aval;
- le danger d'accidents dans le cas d'une chausséee glissante est faible.

Désavantages:


- l'évacuation de l'eau qui s'écoule le long du bord amont de la chaussée nécessite l'aménagement d'aqueducs;
- les distances d'écoulement de l'eau sur la chaussée sont relativement longues;
- en particulier dans le cas de routes en gravier, il y a une tendance à la formation d'ornières.

Appréciation:

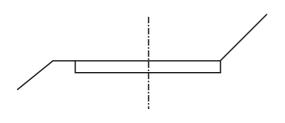
bonne solution pour les routes avec revêtement.

Chaussée à dévers unique vers l'aval

route en gravier: min. 5% route avec revêtement: min. 3%

Avantages:

- l'aménagement d'aqueducs devient caduc.


Désavantages:

- les distances d'écoulement de l'eau sur la chaussée sont relativement longues;
- l'eau provenant de la chaussée ainsi que des talus amont s'écoule par-dessus les talus aval;
- en particulier dans le cas de routes en gravier, il y a une tendance à la formation d'ornières;
- le danger d'accidents dans le cas d'une chaussée glissante ne doit pas être sous-estimé.

Appréciation:

solution possible pour des routes à faible déclivité et dans un terrain relativement plat.

Chaussée horizontale

Avantages:

- l'aménagement d'aqueducs devient caduc.

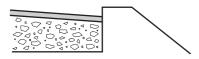
Désavantages:

- l'évacuation de l'eau de la surface de la chaussée
- nécessite l'aménagement de revers d'eau;
 les distances d'écoulement de l'eau sur la chaussée sont relativement longues;
- l'eau provenant de la chaussée ainsi que des talus amont s'écoule par-dessus les talus aval;
- l'entretien de la chaussée avec des machines est problématique.

Appréciation:

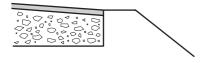
solution possible pour des routes en gravier et à trafic très faible.

4. Accotements (banquettes)


Fonction:

- assurer un contrebutage latéral suffisant de la superstucture, afin d'éviter une extrusion latérale de la superstructure par les véhicules lourds;
- améliorer le tracé optique de la route

Largeur:


accotement de remblai : 50 - 100 cm accotement de déblai : 0 - 50 cm

Accotement de remblai surélevé

- bonne perception optique du tracé de la route
- peu de risques de détérioration par les véhicules lourds
- aménagement de bouches d'écoulement nécessaire

Accotement de remblai au niveau de la chaussée

- mauvaise perception optique du tracé de la route
- risques de détérioration par les véhicules lourds
- évacuation des eaux garantie sans bouches d'écoulement

5. Fossés

Fossé de forme trapézoïdale 50 cm 160 cm 150 - 200 cm

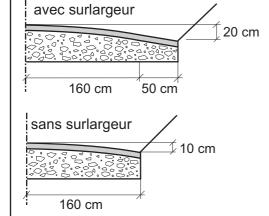
Avantages:

- très grande capacité d'écoulement
- pente du fossé non liée à celle de la route

Désavantages:

- déblai supplémentaire important en terrain à forte déclivité
- risques de détérioration par les véhicules lourds
- entrave à l'exploitation du bois

Caniveau non stabilisé 25 cm 160 cm 50 - 100 cm


Avantages:

- grande capacité d'écoulement
- aucune entrave à l'exploitation du bois

Désavantages:

- déblai supplémentaire
- risques de détérioration par les véhicules lourds

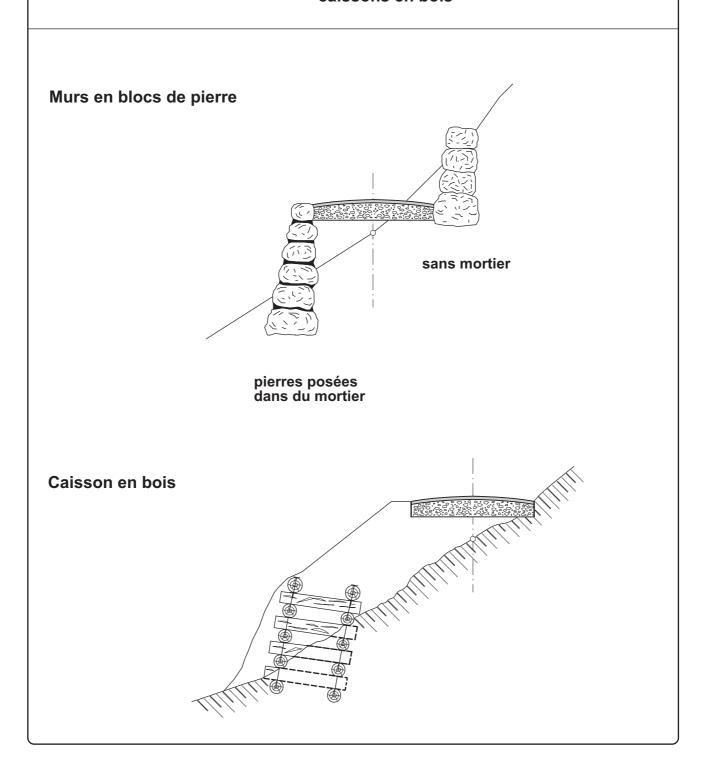
Caniveau stabilisé

Avantages:

- aucun ou peu de déblai supplémentaire
- aucun risque de détérioration par les véhicules lourds
- aucune entrave à l'exploitation du bois

Désavantages:

- capacité d'écoulement réduite
- pente du fossé liée à celle de la route


6. Talus

Talus de déblai: sol consolidé naturellement -----> pente plus élevée Talus de remblai: sol remblayé —> pente moins élevée Terrain meuble sols graveleux (sols grossiers) sols fins Roche roches cristallines, calcaires compactes schistes, grès, conglomérats subalpins phyllites, schistes marneux, conglomérats de la molasse

7. Ouvrages de souténement

Ouvrages de souténement:

- murs en béton
- murs en blocs de pierre (quartiers de pierre)
- gabions
- caissons en bois

8. Superstucture

8.1 Couches de la superstructure

Couche d'usure	
Couche(s) de support	Superstructure
Couche de transition*	
Infrastructure o	ou terrain

^{*} seulement dans le cas de sols de mauvaise portance

Fonctions des couches de la superstructure

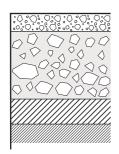
Couche d'usure: - résister à l'action de l'eau de surface et aux contraintes

des véhicules

- protéger les couches inférieures contre l'action de l'eau

de surface

- garantir un confort approprié aux usagers de la route


Couche de support: - répartir les charges des véhicules

Couche de transition: - empêcher le mélange des matériaux de la couche de

support avec le sol

- rendre possible la mise en place de la couche de support

8.2 Superstructures des routes forestières

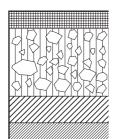


Couche d'usure en gravier

Grave

évent. stabilisation à la chaux ou géotextile Superstructure la plus répandue en Suisse, c'est-à-dire superstructure de la grande majorité des routes forestières du Plateau suisse et du Jura ainsi que des routes forestières de moindre importance (routes de desserte) des autres régions de la Suisse

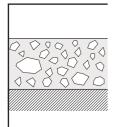
73.6 % du réseau de routes forestières



Revêtement bitumineux

Grave

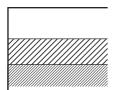
évent. stabilisation à la chaux ou géotextile


Superstructure répandue dans les régions à fortes précipitations (Préalpes, Sud des Alpes) et pour des routes à forte pente en long

Revêtement bitumineux ou enduit superficiel

Grave stabilisée

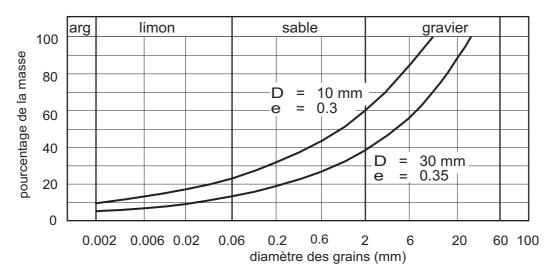
évent. stabilisation à la chaux ou géotextile 25.7 % du réseau de routes forestières



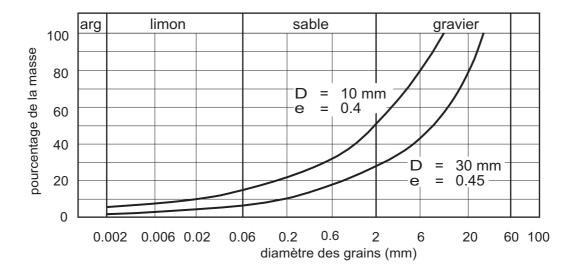
Dalle en béton

évent. grave

Superstructure surtout appliquée pour des routes forestières dans des plaines avec un sol de très mauvaise portance

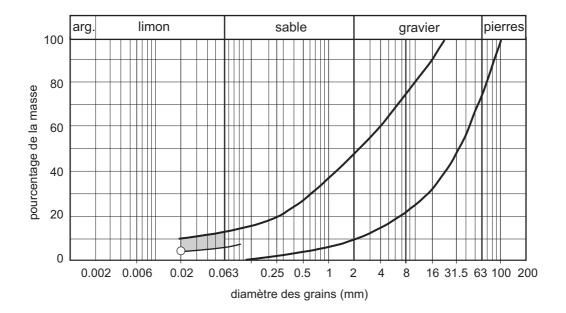

0.7 % du réseau de routes forestières

Dalle en béton évent. stabilisation à la chaux


8.3 Matériaux pour la couche d'usure en gravier

Fuseau granulométrique de matériaux pour la couche d'usure en gravier à liant argileux

grain maximal: 20 - 25 mm teneur en fine à un diamètre de 0.06 mm: 13 - 23% anguleux épaisseur de la couche: 6 - 8 cm

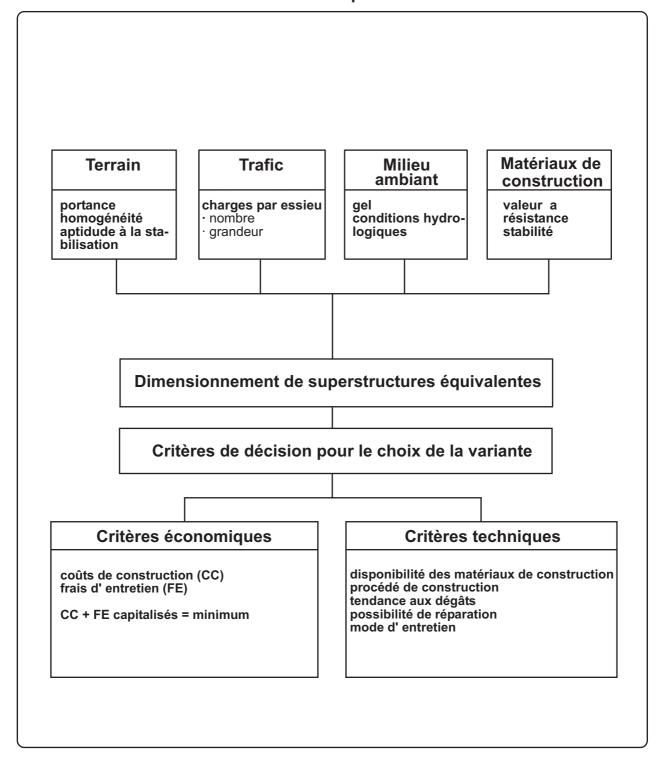

Fuseau granulométrique de matériaux pour la couche d'usure en gravier à liant calcaire

grain maximal: 20 - 25 mm teneur en fine à un diamètre de 0.06 mm: 8 - 15 % anguleux épaisseur de la couche: 6 - 8 cm

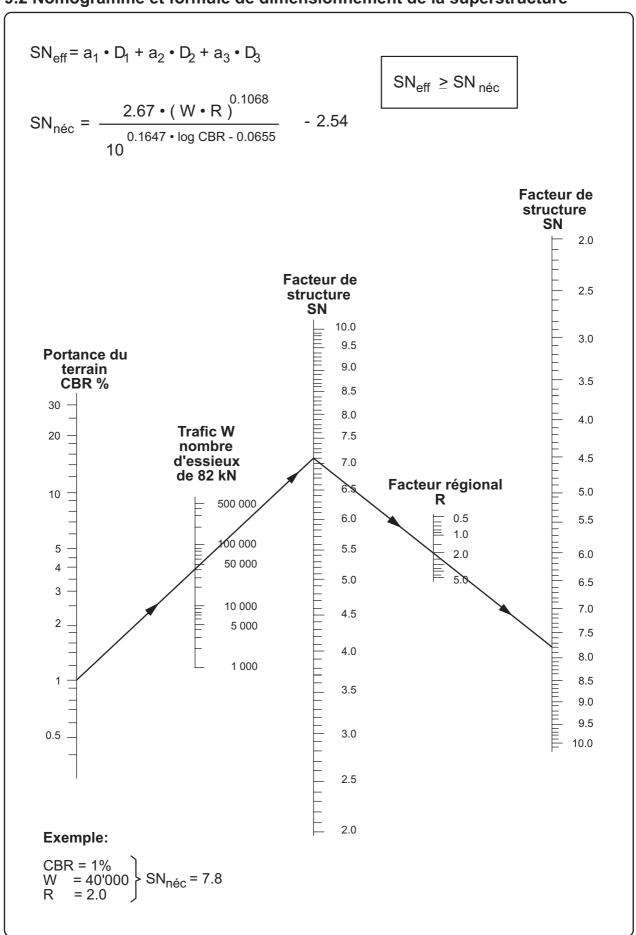
8.4 Graves pour la couche de support

Fuseau granulométrique de graves pour la couche de support

grain maximal: < 100 mm


teneur en fine à un diamètre de 0.02 mm:

< 5 % matériau non gélif < 10 % matériau légèrement gélif


épaisseur minimale de la couche: 20 cm

9. Dimensionnement de la superstucture

9.1 Schéma de dimensionnement de la superstructure

9.2 Nomogramme et formule de dimensionnement de la superstructure

9.3 Portance du terrain

Sols	CBR%
Graviers sableux concassés	100 - 110
Graviers sableux à grains ronds	60 - 80
Graviers limoneux ou argileux	20 - 60
Sables limoneux ou argileux	5 - 10
Argiles de petite plasticité	1 - 5
Argiles de grande plasticité	0.5 - 3
Tourbe	0.2 - 1

9.4 Trafic

Type de routes forestières	Nombre d'essieu de 82 kN
Routes de desserte	
 longueur de la route inférieure à 1.5 km longueur de la route de 1.5 à 3 km 	5'000 5'000 - 10'000
Routes collectrices	
réseau de 3 à 6 km de routesréseau de 6 à 12 km de routesréseau de 12 à 18 km de routes	10'000 - 20'000 20'000 - 40'000 40'000 - 80'000
Routes de liaison	100'000 - 200'000

9.5 Milieu ambiant (facteur régional)

Facteur régional R en Suisse		
Milieu ambiant favorable altitude de moins de 400 m	R = 1.0	
Milieu ambiant favorable altitude de 400 à 800 m	R = 1.5	
Milieu ambiant favorable altitude de plus de 800 m	R = 2.0	

9.6 Matériaux de construction

Matériaux de construction	Coefficient de portance a
Revêtements bitumineux	
Revêtement bitumineux de haute stabilité Revêtement bitumineux de moyenne stabilité	0.40 0.30
Graves	
Grave concassée Grave ronde	0.14 0.11
Stabilisations	
Stabilisation aux liants hydrauliques Stabilisation aux liants bitumineux Stabilisation à la chaux	0.25 0.25 0.15
Matériaux de recyclage	
Granulat de béton Granulat bitumineux Granulat non trié Mâchefer	0.14 0.11 0.11 0.11

9.7 Exemple d'un dimensionnement de la superstructure

Pente de la route 8% Précipitations moyennes —			couche d'usure en gravier à liant argileux ou calcaire	
Altitude Terrain Trafic	plus de 800 m — sol argileux fin — route collectrice — réseau de 10 km de ro	> (R = 2.0 CBR = 1% 40'000 SN _{néc}	= 7.8
Varianta I		Epaisseur	Coefficient a	SN _{eff}
Variante I	Couche d'usure en gravier	7 cm	_	_
	Grave ronde	70 cm	0.11	7.7
	Géotextile		_	- 7.7
Variante II	Couche d'usure en gravier	7 cm	_	_
	Grave ronde	55 cm	0.11	5.5
	Stabilisation à la chaux	15 cm 77 cm	0.15	2.3 7.8
	Couche d'usure en gravier	7 cm	_	_
	Grave concassée	55 cm	0.14	7.7
	Géotextile		_	_
•		62 cm		7.7
Variante IV	Couche d'usure en gravier	7 cm	_	_
	Grave concassée	40 cm	0.14	5.6
	Stabilisation à la chaux	15 cm	0.15	2.3
		62 cm		7.9